这一年,我们不断拓展知识的疆域

来源:科技日报 日期:2021-12-19

  地球系统模拟装置,又称地球模拟实验室,是对地球系统进行数值模拟,即以地球系统观测数据为基础,利用描述地球系统的物理、化学和生命过程及其演化的规律在超级计算机上进行大规模科学计算。科学家们由此得以重现地球的过去、模拟地球的现在、预测地球的未来。

  此次新落成启用的地球模拟实验室整体性能与国际先进水平相当,是我国首个具有自主知识产权,以地球系统各圈层数值模拟软件为核心,软、硬件协同设计,规模及综合技术水平位于世界前列的专用地球系统数值模拟装置。其具备地球表层各圈层的模拟能力,能够更全面地考虑地球系统的各种过程。尤其是在当下最为紧迫的气候变化应对与碳中和领域,该系统能够全方位关注全球生态和生物地球化学过程及其与气候系统的相互作用,并在此基础上建立起“生态—气温—二氧化碳浓度—碳排放量”的清晰关系,对温室气体核算、未来升温预估提供有力的模拟支撑,助力碳达峰、碳中和愿景目标的实现。并且它还将为我国未来在气候与环境领域的谈判提供依据,提升我国的国际话语权。

  “冰光纤”问世

  既可灵活弯曲又能高效导光

  7月9日,权威学术期刊《科学》杂志发表的成果显示,浙江大学光电科学与工程学院童利民教授团队联合浙江大学交叉力学中心和美国加州大学伯克利分校的科研人员,在-50℃环境中,制备出了高质量冰单晶微纳光纤。其既能够灵活弯曲,又可以低损耗传输光,在性能上与玻璃光纤相似。

  光纤作为一种将光约束和自由传输的功能结构,是目前光场操控最有效的工具之一。常规玻璃光纤的主要成分氧化硅(石英砂),是地壳中含量最丰富的物质之一。但实际上,在地球及诸多地外星体中,比石英砂更普遍的物质是冰或液态水。因此用冰制备光纤,具有广泛的应用前景。

  本次研究中,童利民团队自行搭建了生长装置,在大量实验基础上,改进了已有的电场诱导冰晶制备方法,在低温高压电场中,辅之以一定的湿度条件,通过静电促使水分子朝电场方向运动,改变其无序的运动状态,从而诱发单晶生长。最终在-50℃的环境中,成功制备出直径在800纳米到10微米的冰单晶微纳光纤。并且,该团队还利用新发明的低温微纳操控和转移技术,在-150℃的环境中,使冰微纳光纤获得了10.9%的弹性应变,接近冰的理论弹性极限。

  童利民认为,该项研究结果将拓展人们对冰的认知边界,激发人们开展冰基光纤在光传输、光传感、冰物理学等方面的研究,以及发展适用于特殊环境的微纳尺度冰基技术。

  “甩开”光合作用合成淀粉

  节约资源同时提升生产效率

  9月23日,中国科学院宣布重磅成果。该院天津工业生物技术研究所研究人员提出了一种颠覆性的淀粉制备方法,不依赖植物光合作用,以二氧化碳、电解产生的氢气为原料,成功生产出淀粉,在国际上首次实现了二氧化碳到淀粉的从头合成,使淀粉生产从传统农业种植模式向工业车间生产模式转变成为可能。相关研究成果9月24日在线发表于《科学》杂志。

  淀粉主要由绿色植物通过光合作用固定二氧化碳进行合成。在玉米等农作物中,将二氧化碳转变为淀粉涉及60余步的代谢反应和复杂的生理调控,太阳能的理论利用效率不超过2%。而农作物的种植更是需要数月的周期,使用大量的土地、淡水、肥料等资源。

  为提高生产效率,中国科学院天津工业生物所研究人员从头设计了11步主反应的非自然二氧化碳固定与人工合成淀粉新途径,在实验室中首次实现了从二氧化碳到淀粉分子的全合成。这一人工途径的淀粉合成速率是玉米淀粉合成速率的8.5倍。并且在充足能量供给的条件下,按照目前的技术参数推算,理论上1立方米大小的生物反应器年产淀粉量相当于我国5亩土地玉米种植的平均年产量。

  证明凯勒几何核心猜想

  解开数学界60多年“悬案”

  11月初,中国科学技术大学几何物理中心创始主任陈秀雄教授与合作者程经睿在偏微分方程和复几何领域取得里程碑式结果,其解出了一个四阶完全非线性椭圆方程,成功证明强制性猜想和测地稳定性猜想这两个国际数学界60多年悬而未决的核心猜想,解决了若干有关凯勒流形上常标量曲率度量和卡拉比极值度量的著名问题。两篇论文发表于国际著名刊物《美国数学会杂志》。

    A+
声明:本文转载自其它媒体,转载目的在于传递更多信息,并不代表赞同其观点和对其真实性负责。